Mark scheme - Forces in Dynamics

		Answer/Indicative content	Mark s	Guidance
1	C		1	Examiner's Comments This proved to be challenging for most, except for the very topend candidates. All the distractors were equally popular, and just over a third of the candidates got the correct answer C. Many of the scripts from the successful candidates had the term key uniform underlined or circled. The centre of gravity of the rod and the point of contact of the cable to the rod were the same. For equilibrium, the contact force from \mathbf{X} had to pass through this same point - which only left arrow C as the correct answer.
		Total	1	
2		C	1	
		Total	1	
3		B	1	
		Total	1	
4		A	1	
		Total	1	
5		D	1	
		Total	1	
6		D	1	
		Total	1	
7		B	1	
		Total	1	
8	D		1	Examiner's Comments Most candidates did not realise that both the suspended mass and the trolley are moving with acceleration a. The resultant force along for this composite object is W and the total mass is ($\mathrm{M}+$ W / g), giving D as the acceleration.
		Total	1	
9		C	1	

3.2 Forces in Dynamics

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 1 \& \\
\hline \[
\begin{aligned}
\& 1 \\
\& 0
\end{aligned}
\] \& \& A \& 1 \& \begin{tabular}{l}
Examiner's Comments \\
All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
\end{tabular} \\
\hline \& \& Total \& 1 \& \\
\hline \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \& C \& 1 \& \\
\hline \& \& Total \& 1 \& \\
\hline \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& \& B \& 1 \& \begin{tabular}{l}
Examiner's Comments \\
All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. \\
The candidates to demonstrate their knowledge and understanding of physics.
\end{tabular} \\
\hline \& \& Total \& 1 \& \\
\hline \[
\begin{aligned}
\& 1 \\
\& 3
\end{aligned}
\] \& \& B \& 1 \& \\
\hline \& \& Total \& 1 \& \\
\hline \[
4
\] \& a \& \[
\begin{aligned}
\& \text { (resultant force }=\text {) } 4.2-0.8 \text { or } 3.4(\mathrm{~N}) \\
\& (m=) 0.8 / 9.81 \text { or } 0.0815 \ldots(\mathrm{~kg}) \\
\& \left(a=\frac{3.4}{(0.8 / 9.81)}\right) \\
\& a=42\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
\end{aligned}
\] \& C1
C1

A1 \& | Allow 0.082 (kg) |
| :--- |
| Not 0.08 (kg) |
| Allow 2 marks for $F=3.4(\mathrm{~N}), m=0.08(\mathrm{~kg})$ and hence $a=42.5$ or $43\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ |
| Examiner's Comments |
| The majority of the candidates scored full marks. Most answers showed good structure and reasoning. |
| The data is given to two significant figures (SF). Answers given to more significant figures were condoned. However, if the answer was given to one SF, then this would have been penalised once only in the entire paper. |

\hline
\end{tabular}

				Exemplar 9 (b) The container is now full of water. ate equarl. The string is cut and the tube accelerates vertically upwards through the water. The weight of the tube is 0.80 N and the upthrust on the tube is 4.2 N . This exemplar illustrates a decent solution from a grade C candidate. The physics is very easy to follow - resultant force determined, mass calculated from the weight and then the final value for the acceleration. As mentioned earlier, the answer is not given to two SF, but this was allowed in this specific question.
	b	There is (an increasing) friction / drag (acting on the tube)	B1	Allow (water) resistance / resistive force Allow upthrust decreases as tube comes out of water AW Not 'drag and upthrust', unless the upthrust is qualified asabove
		Total	4	
1 5	a	There is no contact force between the astronaut and the (floor of the) space station (so no method of measuring / experiencing weight)	B1	Allow astronaut and the space station have same acceleration (towards Earth) / floor is falling (beneath astronaut) Examiner's Comments Misconception Experiencing weightlessness is not the same as being in freefall There was a lack of understanding of the nature of feeling weightless. The sensation of 'weightlessness' is a lack of the physiological sensation of 'weight'. The skeletal and muscular systems are no longer in a state of stress. This sensation is caused by a lack of contact forces as a result of the ISS and the astronaut experiencing the same acceleration. Common incorrect responses included: - the astronaut is weightless because he is falling - there is no resultant force on the astronaut - gravity is too weak to have any effect on the astronaut - the ISS orbits in a vacuum where there is no gravity.
	i	$\begin{aligned} & M=5.97 \times 10^{24}(\mathrm{~kg}) \\ & \text { or ISS orbital radius } R=6.78 \times 10^{6}(\mathrm{~m}) \\ & \text { or } g \propto 1 / r^{2} \end{aligned}$	C1 C1	

3.2 Forces in Dynamics

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& Although this question looked daunting, it was actually quite linear and many candidates who attempted it were able to gain two or three marks even if they did not eventually get to the correct response. Candidates who set out their reasoning and working clearly were more liable to gain these compensatory marks. \\
\hline \& \& Total \& 13 \& \\
\hline 1 \& a \& arrow down through centre of ball labeled weight or W or mg or 1.2 N \& B1 \& \begin{tabular}{l}
zero if any other arrows or forces present \\
Examiner's Comments \\
There were some carelessly drawn arrows on the diagram but otherwise this was done well. There were some arrows labelled centripetal force.
\end{tabular} \\
\hline \& b \& (horizontally) \(\mathrm{mv}^{2} / \mathrm{r}\left(\right.\) or \(\left.\mathrm{mr} \omega^{2}\right)=\mathrm{T} \sin \theta\) and (vertically) W or \(\mathrm{mg}=\mathrm{T} \cos \theta\)
\[
\begin{aligned}
\& \left(\tan \theta=\mathrm{v}^{2} / \mathrm{rg} \text { or } \mathrm{rw}^{2} / \mathrm{g}\right) \\
\& \tan \theta=0.045 \times 4 \times 9.87 \times 2.2 / 9.81 \text { or } \\
\& 0.48 / 1.2(=0.40) \\
\& \theta=22^{\circ}
\end{aligned}
\] \& M1

A1

A0 \& | accept figures in place of algebra, $\begin{aligned} & \mathrm{r}=0.045 \mathrm{~m}^{\mathrm{v}}=0.42 \mathrm{~m} \mathrm{~s}^{-1} \omega=3 \pi \mathrm{rad} \mathrm{~s}^{-1} ; \\ & \mathrm{r} \omega^{2}=4.0 \mathrm{~m} \mathrm{~s}^{-2} ; \\ & \mathrm{W}=1.2 \mathrm{~N} \text { and } \mathrm{m}=0.12 \mathrm{~kg} \text { and } \\ & \mathrm{mr} \omega^{2}=0.48 \mathrm{~N} \end{aligned}$ |
| :--- |
| accept labelled triangle of forces diagram N.B. this is a show that Q; sufficient calculation must be present to indicate that the candidate has not worked back from the answer |

\hline \& \& \[
$$
\begin{array}{l|l}
\text { ii } & \begin{array}{l}
\mathrm{k}=\left(\mathrm{mg} / \mathrm{x}_{0}=1.2 / 0.050\right)=24\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \\
(T=\mathrm{mg} / \cos \theta=k x \text { giving }) \\
\mathrm{x}=1.2 / 24 \cos 22 \\
\mathrm{x}=0.054(\mathrm{~m})
\end{array}
\end{array}
$$

\] \& | C1 |
| :--- |
| C1 |
| A1 | \& | or solution by ratios |
| :--- |
| Examiner's Comments |
| About half of the candidates completed the angle calculation successfully with |
| a slightly smaller number finding the correct extension of the string. |

\hline \& c \& $$
\begin{aligned}
& \left(y=1 / 2 g t^{2}=\right) 0.18=0.5 \times 9.81 \times t^{2} \\
& \text { giving } t=0.19(s) \\
& (x=v t=) 0.42 \times 0.19=0.08(m) \\
& \text { distance }=\sqrt{ }\left(r^{2}+x^{2}\right)=\sqrt{ }(0.0020+0.0064) \\
& =0.092(m)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{C} 1 \\
& \mathrm{C} 1 \\
& \mathrm{C} 1 \\
& \mathrm{~A} 1
\end{aligned}
$$

\] \& | alt: projectile motion: $\mathrm{x}=\mathrm{vt}, \mathrm{y}=1 / 2 \mathrm{gt}^{2}$ $y=1 / 2 g(x / v)^{2}$ |
| :--- |
| ecf (b)i for $v ; x^{2}=2 y^{2} / g$ $=2 \times 0.18 \times 0.42^{2} / 9.81$ |
| Examiner's Comments |
| About half of the candidates found the time for the ball to fall to the bench. Most then managed to find the horizontal distance from the point of release, but half forgot that the point of reference in the question was the centre of rotation so failing to complete the calculation. |

\hline \& d \& | Tincreases or string stretches or angle θ increases |
| :--- |
| to provide / create a larger centripetal force | \& M1 \& | allow $\mathrm{mv}^{2} / \mathrm{r}$ or mr^{2} in place of centripetal force causality must be implied to gain the A mark |
| :--- |
| Examiner's Comments |

\hline
\end{tabular}

3.2 Forces in Dynamics

2		B	1	
		Total	1	
2 7		A	1	
		Total	1	
		B	1	Examiner's Comments This question proved particularly straightforward and accessible to nearly all candidates.
		Total	1	
2		C	1	
		Total	1	
	i	$\begin{array}{ll} \left(v^{2}=u^{2}+2 a s\right) & \\ & \\ 2.5^{2}=1.3^{2}+2 \times 1.10 \times a & \text { (Any } \\ & \text { subject) } \\ a=2.1\left(\mathrm{~m} \mathrm{~s}^{-2}\right) & \end{array}$	C1	Allow other methods Allow this mark for $t=0.58$ (s) Note answer to 3 SF is $2.07\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Examiner's Comments Most candidates demonstrated excellent understanding and application of equations of motion. The solutions were often well represented, calculations done correctly and the answer written to the correct number of significant figures (SF). A variety of routes were possible, but the most popular method was using the equation $v^{2}=u^{2}+2$ as. Exemplar 5
	ii	$m a=m g \sin \theta$ or $a=g \sin \theta$ or $2.07=9.81 \times$ $\sin \theta$	C1	Allow $2.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow $g=9.8$ Note using $\tan ^{-1}(2.07 / 9.81)$ is wrong physics.

3.2 Forces in Dynamics

		$\theta=12^{\circ}$	A1	Possible ECF from (b)(i) Allow $g=10$ here; it gives the same answer to 2 SF Allow 1 mark for 78°
		Total	2	
$\begin{aligned} & 3 \\ & 1 \end{aligned}$		(After 0.75 s) gradient decreases with time Indicating velocity is decreasing / deceleration	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Examiner's Comments In part (b) some candidates were vague in their responses, for example, stating that the gradient changes rather than stating that the gradient decreases. In part (c) most candidates were able to draw a reasonable tangent. Parts (d) and (e) were harder to answer. Part (d) required the correct time interval to be applied by interpreting the braking time and not including the thinking time. In part (e), high achieving candidates applied the halving of the initial speed to the effect this had on the thinking distance, the thinking time, the braking distance and the braking time.
		Total	2	
$\begin{aligned} & 3 \\ & 2 \end{aligned}$		Weight, drag, upthrust (correct direction and labelled) Correct relative length (upthrust must be longer than sum of other two forces)	B1 B1	
		Total	2	
3	a	Arrow vertical down and an arrow opposite to the frictional force. Both arrows labelled correctly.	M1 A1	Allow weight / mg / W for the downward arrow and tension / T/ 'force in rod' / 'force in tow bar' /'driving force' for the 'upward' arrow
	b	$\begin{aligned} & \left(W_{\mathrm{s}}=\right) 1100 \times 9.81 \times \sin 10^{\circ} \text { or } 1100 \times \\ & 9.81 \times \cos 80^{\circ} \\ & \left(W_{\mathrm{s}}=1874 \mathrm{~N} \text { or } 1900 \mathrm{~N}\right) \end{aligned}$	C1 A0	Allow g instead of value
	c	$\begin{aligned} & \text { force }=1900+300 \\ & \text { force }=2200(\mathrm{~N}) \end{aligned}$	A1	Allow $1870+300=2170$ (N)
	d	$($ distance $=) 120 / \sin 10^{\circ}$ or $691(m)$ (work done =) 2200×691 work done $=1.5 \times 10^{6}(\mathrm{~J})$	C1 C1 A1	Allow ECF from (c) Allow ECF from an incorrect attempt at first mark.
	e	$\begin{aligned} & (A=) \pi \times \\ & 0.006^{2} \end{aligned} \quad \text { or } \quad 1.1 \times 10^{-4}\left(\mathrm{~m}^{2}\right)$	C1 C1	Allow ECF from (c) Allow $X(=F L / E A)=\frac{2174 \times 0.5}{2.0 \times 10^{11} \times 1.1 \times 10^{-4}}$

3.2 Forces in Dynamics

| | | | Examiner's Comments
 Examiners were looking for the idea that in Newton's third law,
 the pair of forces were of the same type and had to act on two
 separate objects. The force W is a gravitational force and N is
 the normal contact force is an electrostatic force between the
 base of the ball and the top of the table. The variety of incorrect
 answers demonstrated the lack of comprehension of this law.
 The two exemplars below show answers from a top-end
 candidate and a candidate securing a middle-grade. |
| :--- | :--- | :--- | :--- | :--- |
| Exemplar 4 | | | |

		- longer crossing time results in cyclist at lower point on other side of gap. - moment on bicycle - rotation lowers height of front wheel. Conclusion based on argument(s). The maximum gap width is smaller.	B1	conclusion based on argument(s). So no change in maximum gap width.
		Total	7	
		(Clockwise moments = anticlockwise moments) $7 \times 10^{n} \times F=30 \times 10^{n} \times 31$ $F=130(\mathrm{~N})$ $\left(\text { mass } \frac{F}{g_{)}}\right.$ $\text { mass }=14(\mathrm{~kg})$	C1 C1 A1	Allow any power of 10 for distance as long as unit consistent. Allow $R=164(\mathrm{~N})$ found by taking moments about flat head of screw/point A Note F to 3 SF is 133 (N)
		Total	3	
		Weight (of tube), upthrust (and tension / F are the forces acting on the tube) (For $t<60 \mathrm{~s}$) the upthrust (on the tube) increases One detail point from: - Upthrust increases because weight of water displaced increases (up to 60s) or upthrust is constant (after 60s) because weight of water displaced is constant - Constant gradient (before 60 s) because upthrust or volume (of water displaced) or mass (of water displaced) or weight (of water displaced) increases at a constant rate - (After $t=60 \mathrm{~s} /$ eventually / finally the) upthrust is constant because tube is (fully) submerged / container is full (of water)	B1	Allow 'buoyancy force' for upthrust throughout, but not just 'buoyancy' Not 'mass' or 'volume' of water displaced Not upthrust = weight of fluid / water displaced Allow 'no more water is displaced after 60 (s) because tube is (fully) submerged' AW Examiner's Comments This question required understanding of upthrust and

3.2 Forces in Dynamics

3.2 Forces in Dynamics

				Examiner's Comments The majority of the candidates gained one mark for correctly calculating the gradient of the line using a large triangle. The reading of the coordinates was generally quite good. A pleasing number of candidates also realised that the gradient was equal to $2 a$ and they then went on to correctly determine the braking force to be 7.4 kN . About a quarter of the candidates gained full marks. In spite of the equation $u^{2}=2 a x$ and the hint of working out the gradient first, many candidates incorrectly assumed the gradient was equal to the deceleration of the car. A small number of candidates attempted to substitute values off the line into the equation $u^{2}=2 a x$; they unfortunately missed the point of the whole question.
		Total	3	
4	a	$\begin{aligned} & p V=\text { constant }\left(\text { or } p_{1} V_{l}=p_{2} V_{2}\right) \\ & p_{\text {final }}=2.4 \times 10^{5} \times 1.2 / 1.5 \\ & =1.9(2) \times 10^{5}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Alternative method: $p=n \mathrm{RT} / V$ (p must be the subject) Allow use of $p=N \mathrm{k} T / V$ (with $N=7.2 \times 10^{22}$ and $\mathrm{k}=1.38 \times 10^{-23}$) Substitute $p=0.12 \times 8.31 \times 290 / 1.5 \times 10^{-3}$ ECF from 1a for incorrect n and/or T $p=1.9(3) \times 10^{5}(\mathrm{~Pa})$ Examiner's Comments Questions 1(a) and 1(b) took the ideal gas equation and applied it to an unfamiliar situation, that of a toy rocket. Most candidates answered these questions well, remembering to convert the temperature from $17^{\circ} \mathrm{C}$ to 290 K .
	b i	$\Delta p=(2.4-1.0)-10^{5}=1.4 \times 10^{5}(\mathrm{~Pa})$ upwards force $(=\Delta p A)=(2.4-1.0) \times 10^{5}$ $\times 1.1 \times 10^{-4}=15(\mathrm{~N})$	C1 C1 A0	Alternative method: Downwards force (from trapped air) $=p \mathrm{~A}=$ $2.4 \times 10^{5} \times 1.1 \times 10^{-4}=26.4(\mathrm{~N})$ and upwards force (from atmosphere) $=p \mathrm{~A}=1.0 \times 10^{5} \times 1.1 \times 10^{-4}=$ 11.0 (N) So total upwards force $=26.4-11.0$ $=15.4(\mathrm{~N})$ Ignore any attempt to calculate weight Special case: Allow $1 / 2$ for the use of $\Delta p=2.4 \times 10^{5}(\mathrm{~Pa})$ giving upwards force $=26.4(\mathrm{~N})$ Examiner's Comments Most candidates realised that a difference in air pressure between the inside and outside of the bottle would force the water downwards, producing an upwards force on the bottle which could be calculated using $p=F / A$.
		$m=0.3+0.05(=0.35)(\mathrm{kg})$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$0.050+\left(10^{3} \times 0.3 \times 10^{-3}\right)$ Alternative approach: $a=(15.4 / m)-\mathrm{g}$

	$\begin{aligned} & \text { (Resultant force = upwards force }-W= \\ & m a \text {) } \\ & 15.4-(0.35 \times 9.81)=0.35 a \text { or } a=12 / 0.35 \\ & a=34\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$		ECF for incorrect value of m No ECF ci (since we are told that upwards force $=15(.4)(\mathrm{N})$) Upwards force $=15(\mathrm{~N})$ gives $\mathrm{a}=33\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Examiner's Comments This question, although a simple F = ma problem, challenged many candidates. Exemplar 1 $\begin{aligned} & \text { (ii) Hence calculate the initial verical accoleration of the rocket. } \\ & \begin{aligned} P=\frac{M}{V} & = \\ m=P V & =1 \times 10^{3} \times 0.3 \times 10^{-3} \\ & =0.3 \end{aligned} \\ & \left.\begin{array}{rl} F & =M a \\ a & =F / m \end{array}\right)=\frac{15.4}{0.3+0.05}=44 \mathrm{Ms}^{2} \end{aligned}$ \qquad
	- (initial) upward force unchanged - (initial) downwards force/weight increases - (initial) resultant force decreases - (initial) acceleration decreases - (initial) rate of change in momentum of rocket decreases - time taken to expel water increases - valid conclusion that the maximum height depends on more than one factor	$\begin{gathered} \text { B1 x } \\ 3 \end{gathered}$	Maximum 3 marks from 7 marking points: Ignore comments which assume an increase in pressure Ignore heavier Allow net or unbalanced or total for resultant Allow fuel for water e.g. the height depends on the bottle's velocity and its height when all the water has been expelled / the height depends on both the acceleration and the time taken to expel the water Examiner's Comments This question involved several factors and a conclusion was not required; hence the word 'discuss'. Candidates who performed well on this question realised that the weight of the rocket would increase, reducing the resultant force, and m would increase in the formula F = ma. These would both give a reduced initial acceleration and imply a smaller height. However, the time taken to expel the water would increase, meaning that the rocket would accelerate for longer. One common misconception was that the larger volume of water in the bottle would increase the pressure of the trapped air. However, as a pump was used to determine the pressure before lift-off, this argument was not given credit.
	Total	11	

3.2 Forces in Dynamics

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& ii

ii \& $$
\begin{aligned}
& \left(s=1 / 2 a t^{2}\right) ; 0.80=1 / 2 \times 3.0 \times t^{2}(\text { Any } \\
& \text { subject })
\end{aligned}
$$

\[
t=0.73(\mathrm{~s})

\] \& C1 \& | Note: Apply SF penalty if 0.7 s is on the answer line or the final answer |
| :--- |
| Allow 1 mark for 0.40 (s); $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ used instead of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Allow full credit for alternative methods, e.g: $v^{2}=2 \times 0.80 \times 3.0 ; v=2.19\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ $\begin{align*} & t=\frac{2.19}{3.0} \tag{C1}\\ & t=0.73(\mathrm{~s}) \end{align*}$ |
| Examiner's Comments |
| Candidates answered this question extremely well. The correct equation was identified, values substituted correctly and the final answer written to two significant figures. Some low-scoring candidates attempted to use the equation $x=v t$ or struggled with rearranging the equation $s=1 / 2 \mathrm{at}^{2}$. A disappointing number of candidates lost a mark for writing the answer to one significant figure on the answer line after correctly calculating the time t to be 0.73 s . |

\hline \& \& \& Total \& 3 \&

\hline \& \& \& | Maximum of two from: |
| :--- |
| (thinking) time is the same |
| (braking) time is halved / 1.25 s |
| total time is 2 s |
| AND |
| maximum of two from: |
| (thinking) distance / displacement travelled (before braking) halved / 7.5 m |
| (braking) distance / displacement quarters / 6.25 m |
| total distance $/$ displacement $=13.75 \mathrm{~m}$ | \& \[

$$
\begin{aligned}
& \mathrm{B} 1 \\
& \times 3
\end{aligned}
$$
\] \&

\hline \& \& \& Total \& 3 \&

\hline 5 \& a \& \& $$
\begin{aligned}
& \pi \times \frac{\left(2.9 \times 10^{-2}\right)^{2}}{4} \text { or } \pi \times\left(1.45 \times 10^{-2}\right)^{2} \\
& 6.605 \times 10^{-4} \mathrm{~m}^{2} \approx 6.6 \times 10^{-4}
\end{aligned}
$$ \& M1

A0 \&

\hline
\end{tabular}

		$\begin{aligned} & V=6.6 \times 10^{-4} \times 12.0 \text { or } 7.92 \times 10^{-5}\left(\mathrm{~m}^{3}\right) \\ & m=400 \times 7.92 \times 10^{-5} \text { or } 0.03168 \mathrm{~kg} \\ & W=0.31(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Ignore POT
	b	$\begin{aligned} & V=\frac{0.31}{1000 \times 9.81} \text { or } 3.16 \times 10^{-5} \\ & y=\frac{3.16 \times 10^{-5}}{6.6 \times 10^{-4}} \\ & y=0.048(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Mass of water displaced $=\frac{0.31}{9.81}=0.316$ $y=\frac{0.316}{1000 \times 6.6 \times 10^{-4}}$
	c	$y=0.053 \mathrm{~m}$ Same weight / mass displaced of oil Smaller density implies larger volume of oil displaced y is larger OR y a $1 / \mathrm{p}$	B1 B1 B1 B1	
		Total	11	
5 1		$\begin{aligned} & m=650 / g \text { or } m=650 / 9.81(=66.3 \mathrm{~kg}) \\ & \left(F=m r \omega^{2} \text { gives }\right) \\ & d=0.050 / m \omega^{2}=0.050 / 66.3 \times(3.5 \times \\ & \left.10^{-3}\right)^{2} \\ & d=62(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Not $m=650 \mathrm{~kg}$ or $m=65 \mathrm{~kg}$ or $\left(F=m v^{2} / r\right.$ and $v=2 \Pi r / T$ gives $)$ $d=0.050 \times(30 \times 60)^{2} /\left(4 \pi^{2} \times 66.3\right)$
		Total	3	
5		Δ time $=1.75-0.75$ OR 3.25-0.75 Using (c): $\quad F=950 \times \frac{20-12}{1.75-0.75} \quad$ or $\begin{aligned} & \text { Using } \\ & \text { graph: }\end{aligned} \quad F=950 \times \frac{20-0}{3.25-0.75} \quad$ or $F=\frac{950 \times 20}{3.25-0.75}$ 7600 (N)	C1 C1 A1	Allow use of (c) and (a) Allow $a=8.0 \mathrm{~m} \mathrm{~s}^{-2}$ for $v^{2}=u^{2}+2 a s$ or $s=u t+1 / 2 a t^{2}$ methods Not ECF for incorrect time Ignore sign
		Total	3	
5 3		The upthrust is equal to the weight of the fluid / liquid / water / air displaced	B1	Examiner's Comments About one in every seven candidates omitted this question and only about a third of the candidates gave an acceptable statement of Archimedes' principle. It was clear from the answers that most candidates had not revised this topic. There were

3.2 Forces in Dynamics

3.2 Forces in Dynamics

				AfL How to use percentage uncertainties. Exemplar 5 The candidate's answer is logically structured showing the percentage uncertainty in the mass and volume and then adding them together so gaining both marks. An answer of 14% would have been acceptable.
	b	$\begin{aligned} & \text { Extension }=0.096-0.078 \text { or } 0.018 \mathrm{~m} \\ & \text { Weight }=0.023 \times 9.81 \text { or } 0.22563 \\ & 13\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$	C1 C1 A1	Allow ECF for incorrect mass conversion from (iv) Allow $12.6\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ or $12.5\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ Examiner's Comments The majority of the candidates clearly showed their working and calculated the force constant correctly. Some incorrectly used the energy stored equation.
	c	Apparent weight $=0.01 \times 13(=0.13 \mathrm{~N})$ (Upthrust $=0.226-0.13)=0.10(\mathrm{~N})$	C1	Allow ECF from (b) Allow 0.008×12.5 Allow 0.1 (N) (1sf) Examiner's Comments In this question, many candidates calculated the apparent weight and then incorrectly assumed that this was the upthrust. Other errors included using the incorrect values for length to determine the extension. Some candidates correctly determined the upthrust by determining the change in extension.
		$\begin{array}{l\|l} \text { ii } & \rho=\frac{0.10}{9.81 \times 8.4 \times 10^{-6}} \\ 1200\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{array}$	C1	Allow ECF from (i) Examiner's Comments Candidates generally found this last question challenging. Some candidates who did less well, attempted to use the equation for liquid pressure. Candidates who did well again clearly showed their reasoning.
		Total	15	
5 5		(weight of plank =) 50×9.81 or 490.5 OR uses a distance of 0.7 m to calculate	C1	

3.2 Forces in Dynamics

	ii	drag force $=0.4 \times 6.0^{2}=14.4 \mathrm{~N}$	C1	
	ii		C1	
	ii	acceleration $=\frac{41.7-14.4}{85}=0.32 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		Total	5	
5	i	4.4-4.6 (N)	B1	
	ii	Weight of cylinder 3.5 cm vertically (judge by eye) Correct closed triangle drawn including T_{A} Correct directions indicated for weight and T_{A} and $T_{\mathrm{A}}=6.4 \pm 0.2(\mathrm{~N})$	M1 M1 A1	
	ii	$39 \pm 1^{\circ}$	A1	Allow ECF from (b)(ii) for trigonometry methods
		Total	5	
5 9	i	$\begin{aligned} & R(=\rho L / A)=1.8 \times 10^{-8} \times 1500 / 1.1 \times 10^{-4} \\ & R=0.25(\Omega) \end{aligned}$	C1 A1	
	ii	$\begin{aligned} & E=\sigma / \varepsilon=T / A \varepsilon(\text { so } T=E A \mathcal{E}) \\ & T=1.2 \times 10^{10} \times 1.1 \times 10^{-4} \times 0.013 \\ & T=1.7 \times 104(\mathrm{~N}) \text { or } 17(\mathrm{kN}) \end{aligned}$	C1 C1 A1	or calculation of $\sigma=1.56 \times 10^{8}\left(\mathrm{Nm}^{-2}\right)$ or $\mathrm{T}=1.56 \times 10^{8} \times 1.1 \times 10^{-4}$
		Total	5	
$\begin{aligned} & 6 \\ & 0 \end{aligned}$	i	(horizontal component of $F=$) $F \times \cos 20^{\circ}$ $\begin{aligned} & F \cos 20^{\circ} \times 1.30=0.30 \times 40 \times 9.81 \\ & F=96.4(\mathrm{~N}) \end{aligned}$	M1 M1 A1	Allow ECF for incorrect trig i.e. use of sine (gives F =265) or $\cos (20$ radians) which gives $F=222$ for 2 marks. Allow ECF for incorrect units for angle and incorrect trig sin(20 radians) which gives $F=99(.2)$ for 1 mark
	ii	$\begin{aligned} & R=F \cos 20^{\circ} \text { or } 96(.4) \times \cos 20^{\circ} \\ & (R=) 91(\mathrm{~N}) \end{aligned}$	C1 A1	Allow ECF from (i) Answer is $90.6(\mathrm{~N})$ to 3 sf if 96.4 used. Answer is $90(.2)(\mathrm{N})$ to 3 sf if 96 used
		Total	5	
$\begin{aligned} & 6 \\ & 1 \end{aligned}$	i	weight $/ \mathrm{W} / \mathrm{mg}$ and downward arrow upthrust $/ U$ and upward arrow drag $/ \mathrm{D} /$ friction and upward arrow	B1 B1 B1	Allow labels used in (c)(i) throughout Ignore arrow sizes. Allow '(water) resistance' for drag Examiner's Comments

3.2 Forces in Dynamics

		ii	$\sigma=5.1 \times 10^{3}(\mathrm{kPa})$	A1	Allow 1 mark for 5.1×10^{6}; POT error Note using $3.57 \times 10^{3} \mathrm{~N}$ gives $5.05 \times 10^{3}(\mathrm{kPa})$
		ii	The clockwise moment increases and therefore T increases.	B1	
			Total	6	
$\begin{aligned} & 6 \\ & 3 \end{aligned}$	a	i	1. either resultant force $F=m a-R$ or resultant force decreases as R increases 2. acceleration a decreases to zero when $F=R$ 3. velocity rises from zero to a terminal / maximum value when $F=R$	B1 B1 B1	allow for points 2 and 3 when $F=R$ appearing only once
		ii ii	1 initial acceleration is $40 / 120=0.33(\mathrm{~m}$ s^{-2}) 2 from the graph $R v=200(\mathrm{~W})$ so $R=40$ N and terminal velocity v is $5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1 C1 A1	or forward force $=40 \mathrm{~N}$ so $R=40 \mathrm{~N}$ for constant speed / zero acceleration
	b		```p.e. \(/\) second \(=m g v \sin \theta=120 \times 9.81 \times 5\) \(\times \sin \theta\) extra power= \(200(\mathrm{~W})\) so \(\sin \theta=1 / 29.4\) giving \(\times=29 \mathrm{~m}\)```	C1 C1 A1	allow force downhill $\mathrm{F}=\mathrm{mgsin} \theta$, extra power $=\mathrm{Fv}$
			Total	9	
$\begin{aligned} & 6 \\ & 4 \end{aligned}$		i	Both forces shown in correct direction and arrows of same length.	B1	
		ii	Zero.	B1	
		ii i ii i ii i	(Conservation of momentum) $u_{x}=v_{x}+v_{z}$ (Conservation of kinetic energy) $u^{2} x=v^{2} x$ $+v^{2} z$ Shows $\mathrm{v}_{\mathrm{x}}=0$ by substitution $v_{z}=u_{x}$ by substitution of $v_{x}=0$	C1 C1 C1 A1	
			Total	6	
$\begin{aligned} & 6 \\ & 5 \end{aligned}$	a		$\mathrm{t}=0$ to 1.5 s , constant force $($ of 30 N$)$ causes constant acceleration $t=1.5$ to 4.0 s zero (resultant) force so constant speed	B1 B1	or reference to N 2 or reference to N 1
		ii	acceleration $=30 / 65=0.46\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	M1	

3.2 Forces in Dynamics

		$\begin{aligned} & \text { speed } v \text { at } 1.5 \mathrm{~s}=\mathrm{at}=0.46 \times 1.5=0.69 \\ & \left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { distance }=1 / 2 \mathrm{at}^{2}+\mathrm{vt}^{\prime}=0.23 \times 1.5^{2}+0.69 \\ & \times 2.5 \\ & \mathrm{~s}=2.24 \mathrm{~m} \end{aligned}$	A1	ecf acceleration value
			C1	ecf acceleration and speed values
	ii		A1	
	b	$\begin{aligned} & \text { power lost in circuit }=30^{2} \times 0.11 \\ & \qquad=99(\mathrm{w}) \\ & \text { mechanical power }=640 \times 0.70=448(\mathrm{~W}) \\ & \text { electrical power input }=28 \times 30=840(\mathrm{~W}) \\ & \text { input power to motor }=741(\mathrm{~W}) \\ & \text { efficiency }=448 / 741=0.60 \text { or } 60 \% \end{aligned}$	C1	Apply ecf rule as appropriate
			C1	
			C1	allow 3 marks for 53\%
			C1	
			C1	
			A1	
		Total	12	
	i	$\begin{aligned} & (\text { stress }=) \frac{7.5}{8.2 \times 10^{-7}} \text { or } 9.15 \times 10^{6}(\mathrm{~Pa}) \\ & (\text { strain }=) \frac{7.5}{8.2 \times 10^{-7} \times 2.0 \times 10^{11}} \text { or } 4.57 \times 10^{-5} \\ & x=2.8 \times 10^{-5}(\mathrm{~m}) \end{aligned}$ OR $\begin{aligned} & E=\frac{F L}{A x} \\ & 2.0 \times 10^{11}=\frac{7.5 \times 0.62}{8.2 \times 10^{-7} \times x} \\ & x=2.8 \times 10^{-5}(\mathrm{~m}) \end{aligned}$	C1 C1 A1 C1 C1 A1	Note answer is 2.84×10^{-5} to 3 SF Special case: 1 mark for $2.8 \times 10^{-4}(\mathrm{~m})$ or $2.9 \times 10^{-6}(\mathrm{~m}) ; 7.5 \mathrm{~g}$ or $7.5 g^{-1}(g=9.81)$ used instead of 7.5
	ii	acceleration at $\mathbf{Y} /$ deceleration at \mathbf{Z} At \mathbf{Y} (tension is) greater $/(T)>7.5(\mathrm{~N})$ At \mathbf{Z} (tension is) less $/(T)<7.5(\mathrm{~N})$	B1	Allow increasing velocity / increasing speed at \mathbf{Y} Allow decreasing velocity / decreasing speed / negative acceleration at \mathbf{Z} / slowing down Ignore 'downward acceleration' at Z Ignore drag throughout Allow $(T)>$ weight Allow $(T)<$ weight
		Total	6	
		Level 3 (5-6 marks) Clear diagrams and procedure and measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks)	$\begin{gathered} B 1 \times \\ 6 \end{gathered}$ 6	Indicative scientific points may include: Diagram and procedure - labelled diagram - correct circuit diagram - description of procedure - use of cushion in case load falls - repeats experiment.

A diagram, some procedure, some measurements and some analysis.

There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.

Level 1 (1-2 marks)

Limited procedure and limited measurements or limited analysis

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

Measurements

- use of balance to measure load
- use of ruler to measure height
- use stopwatch to measure time
- use of ammeter to measure current
- use of voltmeter to measure p.d.

Analysis

- equation to determine input power/energy (IV/IVt)
- equation to determine output power/energy ($\mathrm{mgh} / \mathrm{t}$ or $m g h$)
- equation to determine efficiency
- use of gradient of appropriate graph

Examiner's Comments

This question is assessing candidates' abilities to plan an investigation. The question is set to help candidates e.g. "lift light loads" should have given the hint of gravitational potential energy.

The stem of the question indicates that a suitable diagram should be drawn. Many candidates did not label their diagrams, or the diagrams were not workable. It was expected that there would be a workable circuit diagram with appropriate measuring instruments to determine the input power or energy; correct circuit symbols should be used. There also needed to be a diagram indicting how the useful power or energy could be determined. See Exemplar 1.

When answering planning questions, candidates should identify the measurements that need to be taken and indicate appropriate measuring instruments.

Candidates also needed to explain how the data would be analysed. This required them to give the appropriate equations using their measurements to determine the input power/energy, the output power/energy and the efficiency. Good candidates suggested the plotting of an appropriate graph and explained how the efficiency could be determined from the gradient.

Exemplar 1

3.2 Forces in Dynamics

(

3.2 Forces in Dynamics

		OR $F=1200 \times 2.5$ rate of change of momentum $=3000$ unit: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ or N	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$	Allow ECF from (i) Allow newton
		Total	6	
$\begin{aligned} & 7 \\ & 1 \end{aligned}$	i	(For circular motion) there must (always) be a resultant force towards the centre The resultant force is not always vertical/sometimes has a horizontal component This can only be provided by friction/cannot be provided by R and $\mathrm{W} /$ R and W are always vertical/only F is horizontal	$\begin{gathered} \text { B1 x } \\ 2 \end{gathered}$	any 2 from 3 marking points Allow F provides the horizontal (component of the) centripetal force
	ii	Sine wave with period 30 min and amplitude $0.050(\mathrm{~N})$ Correct phase, i.e. negative sine wave	B1 B1	Must start at the origin
		$\begin{aligned} & F=0.050 \cos 40^{\circ} \\ & F=0.038(\mathrm{~N}) \end{aligned}$	C1 A1	Allow alternative methods e.g. triangle of forces Allow ECF from graph if used
		Total	6	
$\begin{aligned} & 7 \\ & 2 \end{aligned}$	i	$\begin{aligned} & (E=) \frac{4000}{0.080} \\ & (F=) \frac{4000}{0.080} \times 1.6 \times 10^{-19} \\ & (a=) \frac{8.0 \times 10^{-15}}{9.11 \times 10^{-31}} \text { or } 8.78 \times 10^{15} \\ & a=8.8 \times 10^{15} \end{aligned}$	C1 C1 C1 A0	$\begin{aligned} & E=5.0 \times 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & F=8.0 \times 10^{-15}(\mathrm{~N}) \end{aligned}$ Allow this mark if the working is shown. If only value is given, then the answer must be 3SF or more Examiner's Comments This question asks for a calculation to show the value of the vertical acceleration in an electric field. The magnitude of the electric field strength first needs to be calculated, followed by the acceleration from Newton's second law. Candidates are reminded that a show question needs to be answered in detail and that each stage should be clear. Roughly equal numbers of candidates scored full marks or zero on this question.
	ii	$\begin{aligned} & (t=) \frac{0.12}{6.0 \times 10^{7}} \\ & \left(t=2.0 \times 10^{-9} \mathrm{~s}\right) \end{aligned}$	M1 A0	Examiner's Comments As with the previous question, there is the need to make sure that the calculation leading to the given answer is clearly set out.
		$\begin{aligned} & (x=)^{1 / 2} \times 8.78 \times 10^{15} \times\left(2.0 \times 10^{-9}\right)^{2} \\ & x=1.8 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow $a=8.8 \times 10^{15}$ Examiner's Comments Most candidates appreciated the need to use an equation of motion in their solution, but a significant number of candidates

				used an initial horizontal velocity in the expression, leading to an incorrect answer. There were also an unusually large number who gave no response. Candidates should appreciate that if they have been given show questions, then it is likely that these values will be used in alter questions.
7				

3.2 Forces in Dynamics

 \square
 (2) (1)

\qquad
E
[,

